AD-A237 122 1. USE UNLY (Leave blank) **TION PAGE** . . . Form Approved OMB No. 0704-0188 s 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and nformation. Send comments regarding this burden estimate or any other aspect of this collection of information, stylices, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, luction Project (0704-0188), Washington, DC 20503. 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED | May 1991 Special Technical 4. TITLE AND SUBTITLE Using Consistent Subcuts for Detecting Stable Properties Special Technical 5. FUNDING NUMBERS | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Using Consistent Subcuts for Detecting Stable | | | · · · · · · · · · · · · · · · · · · · | | | · | | | 6. AUTHOR(S) NAG 2-593 | | | Keith Marzullo, Laura Sabel | | | 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZA | TION | | Keith Marzullo, Assistant Professor Department of Computer Science | | | Cornell University 91-1205 | | | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR | ING | | AGENCY REPORT NUMB | BER | | DARPA/ISTO AND RAIL RAIL OF LOGICAL PORTION AND RESERVED | | | 11. SUPPLEMENTARY NOTES | | | A Commence of the | | | 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE | | | THE PROPERTY OF THE PUBLIC RELEASE TO PU | | | 13. ABSTRACT (Maximum 200 words) | <u> </u> | | Please see page 1 of this technical report. | • | | in the state of th | | | b e | | | | | | And it is a second of the seco | | | Avett - | • | | | TCL. | | H^{-1} | į | | | BER OF PAGES | | | | | 14 SUBJECT TERMS 15. NUME 12 16. PRICE | | | 12 16. PRICE 7. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMIT | | 91-02333 # Using Consistent Subcuts for Detecting Stable Properties* Keith Marzullo Laura Sabel TR 91-1205 May 1991 > Department of Computer Science Cornell University Ithaca, NY 14853-7501 ^{*}This work was supported by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904, and by grants from IBM and Siemens. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official Department of Defense position, policy, or decision. # Using Consistent Subcuts for Detecting Stable Properties* Keith Marzullo marzullo@cs.cornell.edu Laura Sabel Cornell University Department of Computer Science Ithaca, New York 14853 May 17, 1991 #### Abstract We present a general algorithm for detecting whether a property holds in a distributed system, where the property is a member of a class we call the locally stable properties. Our algorithm is based on a decentralized method of constructing a maximal subset of the local states that are mutually consistent, which in turn is based on a weakened version of vector time stamps. We demonstrate the utility of our algorithm by using it to derive some specialized property-detection protocols, including two previously-known protocols that are known to be efficient. [CL85] gives a simple algorithm that can be used to determine whether or not the global state of an asynchronous distributed system satisfies a given stable property. This algorithm is very general and can be used to detect any stable property of an asynchronous system. However, it is centralized and for most stable properties of interest, it is inefficient in the number of messages used. In this paper, we present an algorithm that can be used to detect stable properties. This algorithm is general in that it can detect a wide class of stable properties (although not as wide as [CL85]), yet it is decentralized and can be optimized for different properties. We demonstrate its utility by using it to derive some specialized property-detection protocols, including two previously-known protocols that are known to be efficient. #### 1 Definitions We consider an asynchronous distributed system consisting of a set of n nonfaulty processes $P = \{p_1, p_2, \ldots, p_n\}$. Between any two processes p_i and p_j there exist two unidirectional fault-free FIFO ^{*}This work was supported by the Defense Advanced Research Projects Agency (DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904, and by grants from IBM and Siemens. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official Department of Defense position, policy, or decision. channels: $C_{i,j}$ from p_i to p_j and $C_{j,i}$ from p_j to p_i , and these channels have unbounded delivery time. Processes communicate only by sending and receiving messages over these channels. A global state $\Sigma \in \mathcal{G}$ is a consistent set of process states and channel states, defined more precisely in Equation 2, below. A property is a predicate expressed over the global state of the system. A stable property is an invariant: once it becomes true, it continues to be true. The most common examples of stable properties of distributed systems are deadlock of a subset of the processes, termination of a distributed computation, and the lack of a token among the processes. There are, of course, other stable properties of interest. For example, in a token passing system that can lose but not regenerate tokens, the predicate "there are no more than k tokens in the system" is a stable property. Processes execute events, which can be send events, receive events, or local events. We say that an event is relevant to a property Φ if the execution of the event can potentially affect Φ . More precisely, if Φ is a boolean formula on the global state of the system, and if event e_i of p_i changes a part of the state that is referenced in Φ , then e_i is a relevant event. For example, if Φ = "a subset of the processes are deadlocked" then the relevant events include those that request a resource and those that grant a resource, since both of these kinds of events affect whether the system is deadlocked. Note that these events could be local events, send events, or receive events, depending on exactly how Φ is defined. Unless stated otherwise, e_i is an event of process p_i . Each event e_i results in the local state σ_i of p_i , and each local state σ_i has a corresponding event e_i that resulted in that state. We will only be interested in detecting a subset of the stable properties, which we call the locally stable properties. Informally, a property Φ is locally stable if no process involved in the property will change its state relative to Φ once Φ holds. For example, suppose Φ = "processes p_i and p_j are deadlocked." Φ is locally stable, because once Φ becomes true, neither p_i nor p_j can execute an event that could affect Φ ; in particular, requesting or granting a resource. More formally, let \mathcal{G} be the set of all global states that the system can attain. Let Σ_{Φ} be the portion of Σ that is referenced in Φ , let A be a set of processes, and let $\Sigma|A$ denote the subset of Σ that consists of the states of the processes in A and the channels between processes in A. Since Φ is stable, if Σ satisfies Φ then all states that are reachable from Σ also satisfy $\Phi^{,1}$ We will call Φ locally stable if it satisfies the following condition: consider any $\Sigma \in \mathcal{G}$ that satisfies Φ , and let A be the set of processes that execute no relevant events in any state that is reachable from Σ . Then Φ can be determined by only considering the values in $\Sigma_{\Phi}|A$. Note that A must be nonempty for properties that reference the state of the system; if A is empty, then Φ can be determined without knowledge of the state of any process or channel and must therefore be constant. For this reason, we will assume in this paper that A is nonempty. $^{^1\}Sigma'$ is reachable from Σ if there is a valid execution that takes Σ to Σ' . The most commonly-studied stable properties—deadlock, termination and no token—are all locally stable. For example, if Σ is a deadlock state, then A includes the deadlocked processes, and so the presence of deadlock can be determined by considering the states of the processes in A. The property "there are no more than k: k > 0 tokens in the system" in a system where a token can be lost when passed is not a locally stable property. This is because if Σ is a state containing k tokens, then every process can execute a relevant event (namely, it can pass a token), and so A is empty. The condition cannot be detected from the values in $\Sigma_{\Phi}|A$, since there are no values in this set. Our protocol will be based on a weak version of vector clocks [Mat89]. The usual definition of a vector clock $V(e_i)$ is: - $V(e_i)[i]$ is the number of events that p_i has executed through e_i , and - $V(e_i)[j], j \neq i$ is the number of events that p_i knew that p_j had executed when p_i executed e_i . This definition gives us the following two relations between vector clocks and cuts, where \rightarrow is the happens-before relation defined in [Lam78]. Equation 1 defines the happens-before relation in terms of vector clocks, and Equation 2 defines when a set of local states comprise a global state: $$\forall i, j : i \neq j : V(e_i)[i] \leq V(e_j)[i] \equiv e_i \rightarrow e_j \tag{1}$$ $$\forall i, j : V(e_i)[i] \ge V(e_j)[i] \equiv \langle \sigma_1, \dots, \sigma_n \rangle \in \mathcal{G}$$ (2) We weaken this definition to weak vector clocks in which the index $V(e_i)[i]$ counts only the number of relevant events that p_i has executed through e_i . With weak vector clocks, several events of p_i may have the same value of $V(e_i)[i]$, but all such states result in the same local state with respect to Φ . Let $E(e_i)$ be the events of p_i that are equivalent to e_i in that they have the same weak vector clock $V(e_i)$. Similarly, let $S(\Sigma)$ be the set of (not necessarily consistent) cuts that are equivalent to Σ ; that is, if $\Sigma' = \{\sigma'_1, \ldots, \sigma'_n\}$, then $\Sigma' \in S(\Sigma) \equiv \forall \sigma_i \in \Sigma : e'_i \in E(e_i)$. The following weakened versions of Equations 1 and 2 hold for both vector clocks and weak vector clocks: $$\forall i, j : i \neq j : V(e_i)[i] \leq V(e_j)[i] \equiv$$ $$\exists e'_i, e'_j : e'_i \in E(e_i) \land e'_j \in E(e_j) \land e'_i \rightarrow e'_j$$ (3) $$\forall i, j : V(e_i)[i] \ge V(e_j)[i] \equiv \exists \Sigma \in \mathcal{G} : \Sigma \in S(\langle \sigma_1, \dots, \sigma_n \rangle)$$ (4) The difference between vector clocks and weak vector clocks is illustrated in Figure 1. We assume that the predicate of interest references x and y, but not u nor any of the channel states. The upper execution shows normal vector clock values and the lower execution shows the weak vector clock values. Note that although the events x := 1 and y := 3 do not form a consistent cut, their timestamps in (b) satisfy Equation 4 since there does exist a consistent cut in which (x = 1, y = 3). Figure 1: Execution: (a) with vector clocks, (b) with weak vector clocks. ## 2 Protocol We first assume that a process p_0 wishes to determine when the global state of the processes $P = \{p_1, \ldots, p_n\}$ satisfies a locally stable property Φ . In Section 2.1, we will change this protocol so that any number of processes in P may concurrently assume the role of p_0 . For simplicity, the state of the channel $C_{i,j}$ from p_i to p_j will be represented by two (unbounded) queues: $send_i[j]$, which is the sequence of messages p_i has sent to p_j and is maintained by p_i , and $recv_j[i]$, which is the sequence of messages p_j has received from p_i and is maintained by p_j . Whenever we apply this algorithm, we will need to show that the length of these queues is in fact bounded by a small value. Whenever a process p_i executes a relevant event e_i , p_i records in a buffer B_i its state relative to Φ and the vector time stamp $V(e_i)$. Thus, having executed e_i , the value of B_i will be $(\sigma_i, V(e_i))$. We will abbreviate these two components of B_i as $B_i.\sigma$ and $B_i.V$. Then, p_0 periodically collects the values of the buffers in any order. Once p_0 has received these values, p_0 determines if there exists a maximal consistent subcut among $\{B_1, \ldots, B_n\}$ that satisfies Φ . By consistent subcut, we mean a set of states whose timestamps satisfy Equation 4; hence, the state of a single process is trivially a consistent subcut. If p_0 can find such a subcut that satisfies Φ , then Φ must currently hold. Unfortunately, the number of maximal subcuts of a set of n weak vector clocks is $\Omega(2^n)$. Fortunately, it is not necessary for p_0 to examine all of these subcuts. Suppose the set of buffer values contains B_i and B_j that are inconsistent: $B_i.V[i] < B_j.V[i]$. These two states violate Equation 4, and so cannot be part of the same consistent subcut. However, B_j records the fact that p_i has executed a relevant event since B_i was recorded. Since Φ is locally stable, the event that generated B_i cannot have been involved in establishing Φ , and so p_0 need not consider any consistent subcut containing B_i . Given the partial order $B_i > B_j \stackrel{\text{def}}{=} B_i.V[j] > B_j.V[j]$, p_0 need only find the greatest elements of >, which can be done in $\Omega(n^2)$ time. We call this subset the latest subcut. By Equation 4 the latest subcut is clearly a maximal subcut, and all events not in the latest subcut have executed relevant events since recording their state and so their values can be ignored. The soundness of this protocol is straightforward. We now argue that the protocol is complete as well; that is, if Φ holds, then our protocol will detect Φ . Let Σ be the first global state in which Φ holds. Since Φ is locally stable, there is a nonempty set of processes A none of which execute a relevant event after Σ ; these processes will not change their states relative to Φ or update their vector clocks after Σ . If p_0 initiates the protocol after Σ (i.e., when Φ holds), then p_0 will collect the states $\Sigma_{\Phi}|A$. From the definition of \succ , the state of a process p_i in A must be in any latest subcut constructed by p_0 because p_i will execute no relevant event. Hence, p_0 will detect Φ . ## 2.1 Optimization In the above protocol, p_0 's role is to collect the states, determine the latest subcut and check if Φ holds in this subcut. We can decentralize these steps by collecting the states in a token. Consider a token K that consists of n entries $\langle D_1, \ldots, D_n \rangle$ where each entry $D_i = (B_i.\sigma, B_i.V[i])$: that is, D_i will hold the state of p_i relevant to Φ and the local component of p_i 's vector clock when it generated this state. Assume that there exists a special value \bot for D_i indicating that the state has not yet been collected; so, all of the D_i in K are initially set to \bot . Whenever p_i wants to know whether Φ holds, it generates an empty token K, inserts its state ²The initiator could examine all consistent subcuts, but if $A' \subseteq A$ and $\Sigma_{\Phi}|A'$ supports Φ , then $\Sigma_{\Phi}|A$ will also support Φ , so we need only examine the maximal subcuts. Of course, Φ may be of the form $\forall p_i : \Psi(p_i)$, in which case only a full consistent cut will satisfy Φ . into D_i , and passes the token to any other process. When a process p_j receives a token K, it takes the following steps: - p_j sets D_j to $(B_j, \sigma, B_j, V[j])$. - p_j casts out any values D_i that are not part of the latest subcut. Note that by definition, B_j must be part of the latest subcut, so only the earlier values D_i need be tested with respect to B_j . From above, the value B_i can be discarded if $B_i.V[i] < B_j.V[i]$. The value $B_i.V[i]$ is stored in D_i , so K carries enough information for p_j to make this test. If D_i is not in the latest subcut, then p_j sets D_i to \bot . - p_j determines whether the values D_i satisfy Φ . If so, then the detection is made: otherwise. p_j forwards the token to a process p_k , chosen fairly, with $D_k = \bot$. If there is no such process, then p_j can drop the token. Note that we have no a priori restriction on how many tokens there can be in the system at any time or on how the token is passed, other than it is passed in a fair manner. These decisions can be made when the algorithm is applied to a particular problem. #### 3 Termination Detection We can now instantiate the general protocol given above to obtain a protocol that detects termination in a distributed system. There are many variations of this property. The earliest that we know of is due to Dijkstra, in [Dij80]. The following definition is the same as that given in [Mis83]. All processes are either active or idle. Only active processes can send messages. An active process may become idle at any time; an idle process may become active upon receipt of a message. The system is terminated when all processes in the system are idle and there are no messages in transit. The events that are relevant to termination are sending a message, receiving a message, becoming idle, and becoming active. Therefore, each process will update its (weak) vector clock upon executing any of these events. The state of a process relative to termination consists of whether the process is active or idle and whether there is a message on an incoming channel. Note that for this problem, we do not need to keep track of the contents of the messages exchanged between processes; only the number of messages is important. To capture the channel states, we have each process keep track of how many messages it has sent and received on each adjacent channel. The combined information of all of the processes will then yield the number of messages in transit on each channel: if p_i has sent more messages to p_j than p_j has received from p_i , then there is at least one message on channel $C_{i,j}$. We instantiate the general protocol given in Section 2.1 as follows: Each process p_i maintains the following local state variables: - $active_i$: Boolean = true if and only if p_i is active. - $send_i[1..n]$: Integer array. $send_i[j]$ = the number of messages that p_i has sent to p_j (initially 0). - $recu_i[1..n]$: Integer array. $recu_i[j]$ = the number of messages that p_i has received from p_j (initially 0). When p_i sends a message to p_j , $send_i[j]$ is incremented. When p_i receives a message from p_j . $recv_i[j]$ is incremented. When p_i becomes active or idle, $active_i$ is set appropriately. At some point, an idle process p_u will start the detection algorithm by circulating a token as described in Section 2.1. The termination condition can only be evaluated over a total global state, so a positive determination can only be made by the process p_f that is the last to add its state to the token. Process p_f detects termination if and only if the following three conditions hold: - 1. The timestamps in the token form a consistent cut over all processes; - 2. All processes are idle: $\forall i : active_i = false;$ - 3. There are no messages in transit: $\forall i, j : send_i[j] = recv_j[i]$. We claim that item 1 is redundant: item 3 implies that the cut is consistent. Suppose by way of contradiction that when all of the states and timestamps have been collected, item 3 holds but the timestamps form an inconsistent cut. That the cut is inconsistent implies from Equation 4 that for some $i, j, B_i.V[i] < B_j.V[i]$. $B_j.V[i]$ is advanced only when p_j receives a message and events local to p_j only affect $B_j.V[j]$. Therefore, there must have been a chain of messages between p_i and p_j between the time that B_i was collected and the time that B_j was collected. This implies that there is some k such that $send_i[k] < recv_k[i]$. This contradicts the assumption that item 3 holds. Therefore, p_f need only check the last two items. In fact, these checks can be done incrementally. For example, we can assign a total order to the processes and have the token passed along that total order. When process p_k receives the token, it tests to see if $$\neg active_k \land (\forall \ell : 1 \le \ell < k : (send_k[l] = recu[k]) \land (send_l[k] = recu_k[l])).$$ If this condition does not hold, then p_k can drop the token. If the condition holds and k = n, then termination is detected; otherwise, p_k fills in D_k and passes the token to p_{k+1} . This yields the protocol given in [Mat87] as the channel counting protocol, which only requires n messages to detect termination once it holds, and which can be further refined into a protocol that is space-efficient. ### 4 Deadlock Detection We now instantiate the general protocol given in Section 2 to obtain a protocol that detects k-outof-m deadlock in a distributed system. This problem was first formulated and solved in [BT84]. In this formulation, a process can request k resources from a pool of m resources. A process is either active or blocked. An active process is one that is not waiting for any other process. Active processes may issue k-out-of-m requests in the following way. When an active process p_i requires k processes to carry out some request, it sends request messages to each of the m processes that can perform this action. Process p_i then becomes blocked, and waits until the action requested is carried out by at least k of the m processes. A process can not send any further requests while blocked. Only active processes can carry out a requested action. If a process p_j receives a request while active, it will either become blocked or carry out p_i 's requested action within finite time. In the latter case, p_j will send a grant message to p_i . When p_i receives k grant messages, it becomes active again. It then relinquishes the requests made to the rest of the processes to which it sent request messages by sending them relinquish messages. We assume that a grant message identifies its corresponding request message (for example, by using a sequence number) so that if p_i receives more than k grant messages for a given request message, the extra grant messages can be discarded. The global state of the system will be represented as follows. Each process p_i maintains the following variables: - k_i : Integer = the number of grant messages required for p_i to become active (initially 0). - r_send_i[1..n]: Integer array. r_send_i[j] is the number of request messages that p, has sent to p, (initially 0). - $r_recu_i[1..n]$: Integer array. $r_recu_i[j]$ is the number of request messages that p_i has received from p_j (initially 0). - $g_send_i[1..n]$: Integer array. $g_send_i[j]$ is the number of grant messages that p_i has sent to p_j (initially 0). - $g_{recu_i}[1..n]$: Integer array. $g_{recu_i}[j]$ is the number of grant messages that p_i has received from p_j (initially 0). We also define the following two state functions: • blk_i : Integer set. $j \in blk_i$ if p_i has received a request message from p_j and p_i has not sent a corresponding grant message (i.e., p_i is blocking p_j). This is defined as $$j \in blk_i \stackrel{\text{def}}{=} r \operatorname{recu}[j] > g \operatorname{send}_i[j]$$ • wf_i : Integer set. $j \in wf_i$ if p_i has sent a request message to p_j and p_i has not received a corresponding grant message (i.e., p_i is waiting for p_j). This is defined as $$j \in wf_i \stackrel{\text{def}}{=} r_send_i[j] > g_recv_i[j]$$ The system wait-for graph is constructed as follows: - a waits-for edge is drawn from p_i to p_j when $j \in wf_i \land (i \in blk_j \lor (r_send_i[j] > r_recv_j[i]))$; - the value κ_i is defined as $k_i |\forall j : g_send_j[i] g_recv_i[j]|$. Deadlock is tested by reducing this graph: if an edge points from p_i to p_j and p_j is active, then the edge can be erased and κ_i can be reduced by one; and if a process has $\kappa_i = 0$, then all of its outgoing edges can be erased. The system is deadlocked if and only if there are edges that cannot be removed by following these two rules. The relevant events are requesting a resource, granting a resource, receiving a grant, and receiving a request. Several actions may be associated with a relevant event; for example, when p_i requests 1 out of 2 resources from p_j and p_k , the following steps are executed atomically: - 1. k_i is set to 1; - 2. r_send_i[j] and r_send_i[k] are incremented; - 3. $B_i \cdot V[i]$ is incremented. The request messages can then be sent to p_i and p_k . As described in Section 2.1, a process can start circulating a token at any time. For deadlock, a process need only send a token if it is blocked for an excessive time, and a logical place to forward the token is to one of the processes upon which it is blocked. This protocol can be optimized further. For example, if we restrict ourselves to RPC deadlock (1-out-of-1 requests), then $k_i = 1$ and need not be represented in the wait-for graph, and the wait-for graph is reducible if and only if it does not contain a cycle. Hence, when a process p_i receives a token K it can test for a cycle in the wait-for graph simply by testing to see if its state is still consistent with D_i . Furthermore, if a blocked process delays receiving any request messages while blocked, then it is easy to show that the vector clocks are not necessary: all states in the token are consistent at any time. Recall that when p_j receives a token from p_i where $i \in blk_j$, p_j adds its state and forwards the token to the process in wf_j if wf_j is nonempty and drops the token if wf_j is empty. Suppose by way of contradiction that D_i and D_j are two entries in the token such that B_i and B_j are inconsistent: $B_i.V[i] < B_j.V[i]$. Then p_i must have sent a request message since its state was added to the token. Furthermore, B_j must have been added to the token after B_i , which implies that there is a path in the wait-for graph from p_i to p_j . But this means that p_i cannot become active until p_j sends a grant message to the process in blk_j , contradicting that p_i sent a request message since its state was added to the token. Therefore, all states in the token at any time are consistent. A similar argument can be made to show that this protocol will detect and-deadlock (m-out-of-m requests), but the argument is more complex. The resulting protocol is the one presented in [CMH83]. #### 5 Conclusion This paper presents a general protocol for detecting a class of stable properties (the locally stable properties) by constructing consistent subcuts. The protocol collects the consistent subcuts in a decentralized manner and is message efficient. We have demonstrated its use by refining it to a known protocol for termination detection, a new protocol for k-out-of-m deadlock detection, and a known protocol for and-deadlock detection. It is interesting to note that the two known protocols are, in fact, implicitly constructing consistent subcuts. The class of locally stable properties was defined in proving the protocol correct. We are interested in whether the protocol can be extended to detect a wider set of stable properties. We would also like to better understand the notion of relevant events and weak vector clocks. We have attempted to refine our protocol to several known protocols, and have found that subtle changes in the definition. Or relevant events and propagation of vector time stamps can greatly ease the process of refinement. Acknowledgements We would like to thank Özalp Babaoğlu, Gil Neiger, Fred Schneider, and Sam Toueg for their contributions to the ideas in this paper. We would also like to thank Navin Budhiraja, Tushar Chandra, and Mark Wood for their valuable comments on earlier drafts of this paper. #### References - [BT84] G. Bracha and Sam Toueg. A distributed algorithm for generalized deadlock detection. In Proceedings of the Symposium on Principles of Distributed Computing, pages 285-301. ACM SIGPLAN/SIGOPS, August 1984. - [CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of distributed systems. ACM Transactions on Computer Systems, 3(1):63-75. February 1985. - [CMH83] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection. ACM Transactions on Computer Systems, 1(2):144-156, May 1983. - [Dij80] Edsger W. Dijkstra. Termination detection for diffusing computations. Information Processing Letters, 11(1):1-4, 1980. - [Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565, July 1978. - [Mat87] Friedemann Mattern. Algorithms for distributed termination detection. Distributed Computing, 2(3):161-175, 1987. - [Mat89] Friedemann Mattern. Time and global states of distributed systems. In Michel Cosnard et. al., editor, Proceedings of the International Workshop on Parallel and Distributed Algorithms, pages 215-226. North-Holland, October 1989. - [Mis83] Jayadev Misra. Detecting termination of distributed computations using markers. In Proceedings of the Symposium on Principles of Distributed Computing, pages 290-294. ACM SIGPLAN/SIGOPS, August 1983.